Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 13: 811430, 2022.
Article in English | MEDLINE | ID: covidwho-1731772

ABSTRACT

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Glucocorticoids/metabolism , Immunity, Innate/drug effects , Inflammation/drug therapy , Receptors, Androgen/metabolism , Virus Internalization/drug effects , Animals , COVID-19/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/virology , Lung/virology , Male , Mesocricetus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Load/drug effects
2.
Am J Gastroenterol ; 116(7): 1414-1425, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1229490

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 virus, is a predominantly respiratory tract infection with the capacity to affect multiple organ systems. Abnormal liver tests, mainly transaminase elevations, have been reported in hospitalized patients. We describe a syndrome of cholangiopathy in patients recovering from severe COVID-19 characterized by marked elevation in serum alkaline phosphatase (ALP) accompanied by evidence of bile duct injury on imaging. METHODS: We conducted a retrospective study of COVID-19 patients admitted to our institution from March 1, 2020, to August 15, 2020, on whom the hepatology service was consulted for abnormal liver tests. Bile duct injury was identified by abnormal liver tests with serum ALP > 3x upper limit of normal and abnormal findings on magnetic resonance cholangiopacreatography. Clinical, laboratory, radiological, and histological findings were recorded in a Research Electronic Data Capture database. RESULTS: Twelve patients were identified, 11 men and 1 woman, with a mean age of 58 years. Mean time from COVID-19 diagnosis to diagnosis of cholangiopathy was 118 days. Peak median serum alanine aminotransferase was 661 U/L and peak median serum ALP was 1855 U/L. Marked elevations of erythrocyte sedimentation rate, C-reactive protein, and D-dimers were common. Magnetic resonance cholangiopacreatography findings included beading of intrahepatic ducts (11/12, 92%), bile duct wall thickening with enhancement (7/12, 58%), and peribiliary diffusion high signal (10/12, 83%). Liver biopsy in 4 patients showed acute and/or chronic large duct obstruction without clear bile duct loss. Progressive biliary tract damage has been demonstrated radiographically. Five patients were referred for consideration of liver transplantation after experiencing persistent jaundice, hepatic insufficiency, and/or recurrent bacterial cholangitis. One patient underwent successful living donor liver transplantation. DISCUSSION: Cholangiopathy is a late complication of severe COVID-19 with the potential for progressive biliary injury and liver failure. Further studies are required to understand pathogenesis, natural history, and therapeutic interventions.


Subject(s)
COVID-19/complications , Cholangitis, Sclerosing/epidemiology , End Stage Liver Disease/epidemiology , Jaundice/epidemiology , Adult , Aged , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Bile Ducts/diagnostic imaging , Bile Ducts/immunology , Bile Ducts/pathology , Biopsy , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Cholangiopancreatography, Magnetic Resonance , Cholangitis, Sclerosing/diagnosis , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/therapy , Disease Progression , End Stage Liver Disease/diagnosis , End Stage Liver Disease/immunology , End Stage Liver Disease/surgery , Female , Humans , Jaundice/diagnosis , Jaundice/immunology , Jaundice/therapy , Liver Function Tests , Liver Transplantation , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index
3.
Case Rep Gastroenterol ; 15(1): 408-417, 2021.
Article in English | MEDLINE | ID: covidwho-1166614

ABSTRACT

Gastrointestinal (GI) symptoms of SARS-CoV-2/COVID-19 in the form of anorexia, nausea, vomiting, abdominal pain and diarrhea are usually preceded by respiratory manifestations and are associated with a poor prognosis. Hematochezia is an uncommon clinical presentation of COVID-19, and we hypothesize that older patients with significant comorbidities (obesity and cardiovascular) and prolonged hospitalization are susceptible to ischemic injury to the bowel. We reviewed the clinical course, key laboratory data including acute-phase reactants, and drug/medication history in 2 elderly male patients admitted for COVID-19 respiratory failure. Both patients had a complicated clinical course and suffered from hematochezia, acute blood loss, and anemia which led to hemodynamic instability requiring blood transfusion around day 40 of their hospitalization. Colonoscopic impressions were correlated with the histopathological findings in the colonic biopsies that included changes compatible with ischemia and nonspecific acute inflammation, edema, and increased eosinophils in the lamina propria. Both patients were hemodynamically stable, on prophylactic anticoagulants, multiple antibiotics, and antifungal agents due to respiratory infections at the time of lower GI bleeding. Hematochezia resolved spontaneously with supportive care. Both patients eventually recovered and were discharged. Elderly patients with significant comorbid conditions are uniquely at risk for ischemic injury to the bowel. This case report highlights hematochezia as an uncommon GI manifestation of spectrum of COVID-19 complications. The causes of bleeding in these COVID-19 associated cases are likely multifactorial and can be attributed to concomitant etiologies based on their age, multiple comorbid conditions, prolonged hospitalization compounded by lung injury, and hypoxia precipitated by the virus. We hypothesize that rather than a direct viral cytopathic effect, ischemia and hypoperfusion may be unleashed due to the cytokine storm orchestrated by the virus that leads to abnormal coagulation profile. Additional factors that may contribute to ischemic injury are prophylactic use of anticoagulants and polypharmacy. There were no other causes to explain the brisk lower GI bleeding. Presentation of hematochezia was followed by hemodynamic instability that may further increase the mortality and morbidity of COVID-19 patients, and prompt consultation and management by gastroenterology is therefore warranted.

4.
Cell Cycle ; 19(24): 3632-3638, 2020 12.
Article in English | MEDLINE | ID: covidwho-1066164

ABSTRACT

PT150 is a clinical-stage molecule, taken orally, with a strong safety profile having completed Phase 1 and Phase 2 clinical trials for its original use as an antidepressant. It has an active IND for COVID-19. Antiviral activities have been found for PT150 and other members of its class in a variety of virus families; thus, it was now tested against SARS-CoV-2 in human bronchial epithelial lining cells and showed effective 90% inhibitory antiviral concentration (EC90) of 5.55 µM. PT150 is a member of an extended platform of novel glucocorticoid receptor (GR) and androgen receptor (AR) modulating molecules. In vivo, their predominant net effect is one of systemic glucocorticoid antagonism, but they also show direct downregulation of AR and minor GR agonism at the cellular level. We hypothesize that anti-SARS-CoV-2 activity depends in part on this AR downregulation through diminished TMPRSS2 expression and modulation of ACE2 activity. Given that hypercortisolemia is now suggested to be a significant co-factor for COVID-19 progression, we also postulate an additive role for its potent immunomodulatory effects through systemic antagonism of cortisol.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/metabolism , SARS-CoV-2/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , Cell Line , Disease Progression , Down-Regulation , Glucocorticoids/antagonists & inhibitors , Glucocorticoids/metabolism , Humans , Hydrocortisone/antagonists & inhibitors , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Middle East Respiratory Syndrome Coronavirus/drug effects , Receptors, Glucocorticoid/agonists , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL